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ON THE NON-EXISTENCE OF A SUPPLEMENTARY INTEGRAL IN THE PROBLEM
OF A HEAVY TWO-LINK PLANE PENDULUM

A.A. BUROV

The non-existence of an analytic supplementary first integral in the phase
variable that is independent of the energy integral is proved by the
method of splitting the separatrices. The existence of certain classes of
periodic solutions is proved by using Poincaré's theorem.

The question of the non-existence of an additional linear integral in the momenta is
examined in /1/ in the case when a plane pendulum is comprised of two identical links. The
non-existence of an additional quadratic, and therefore, linear integral in the momenta is
proved in /2/ in the case when the plane mathematical pendulum is comprised of two arbitrary
links.

1. we consider a two link, heavy plane pendulum that oscillates in the vertical plane.

We assume that the first link rotates around a fixed horizontal axis 4; while the second
rotates around a horizontal axis 4, coupled rigidly to the first link and is parallel to the
4, axis.

Let G; be the centre of mass of the i-th linkage, m; the mass, and I; the moment of inertia
relative to the 4d;axis. If I=|4,4:|, 4 =|A,G|, ly=|436:]|, @ = / G A4, q;, 4» axre angles formed by
the segments A4,4,, 4,G; with the vertical, then the expressions for the kinetic energy and the
force function have the form

T =3 (I} + mgl) ¢ + 2mglyl co8 (¢ — q3) ©1'0s’ + 14057%)
V= g (ml cos (g + @) + ma (I cos g -+ I3 cos gy))

where g is the acceleration due to gravity.
When the conditions
a=m, md=mlY 1.1)

are satisfied the force function V is independent of the angle g¢. If at least one of the
conditions (1.1l) is not satisfied, then the force function can be represented in the form

V = Gg cos (g + B) + gmylg c08 gy

G = [(myl, cos & + myl)® + (myhy sin &))"

cos B = (myl, cos @ + mgl)/G, sin P = my}; sin a/G

Let p; = dT/dgs be canonical momenta conjugate to the coordinates ¢, Then the system

moiton is described by the Hamilton equations
gi" = 0Hlap;, p;" = —oHlog;, i =1, 2 (1.2)
H =1, (I} + ma) Iy — m®h*P cos ? (g — gqa)) ™! X 1.3)
(Iap1® — 2mglgl €08 (g1 — g3) PPy + (I1 + mgl®) ps?) —
8 (myly c08 (g; -+ @) + ma (I cos g + I3 cos gq))

2. We will examine the case when at least one of conditions (1.l) is not satisfied. We
introduce the dimensionless parameter g, >0 into the system of equations of motion by setting
l; = Ly, where L;>0 is a constant with the dimensions of length.

The Hamiltonian (1.3) is an analytic function of the momenta p;, the ccordinates g¢; and

the parameter & < (0, [(I; + myP) I (myl)%]"). Its series expansion in powers of the parameter e
has the form

H (1, Pas Q1> 92) = Ho (Py, Pay @) + &1H1 (P1y P3s 91, 99) + .« -« (2.9)
Ho =13 (a,p* + 83ps") — Gg cos (g + ) 22
Hy = —ay™a,a5p,p; €08 (g, — g5) — gmslyg OB g3 2.3

ag = (maLgl)™, @y = (I} + myl®)7?, ap = I37L

For e =0 the system equations of motion (1.2) with the Hamilton function (2.1) is
Liouville integrable: in addition to the energy integral F,= H, it possesses the integral
Fy = ps corresponding to the cyclic coordinate g¢,. In this case the first link moves as a
physical pendulum while the second link performs uniform motion around the 4; axis with angular
velocity wg= Py/I; for Fy= P3=0.

For e =0 system (1.2) possesses two particular periodic solutions {P,=+0)
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Z, (6, 0)={py=0,ps= Py, gy = 11 — B, g3 = 042 + q30}

zo(t, 0)={p1 =0, py= Py, ¢ = —P, g3 = gt + gg0}
of period T;=2ne;! located on the energy integral levels h, =1)l084+6¢ and k=110 —GCg,
respectively. Let us clarify whether for sufficiently small values of e, there exist one-
parameter families of periodic solutions analytically dependent on the parameter e for system
(1.2), and located at the energy integral levels {H =h,} and {H =h, and going over into the
solutions z,(t,0) and z, (¢, 0) for e; = 0.

Let

X5 (Ta) f.,ﬂ

Zy(Ty)= “ v, 0

where Xq,(T;) is the monodromy matrix of the periodic solution z; (4, 0), 0=0, n
f5 = col (—dH,/dq,, 0H/dp;, —3H,ldg,, 8H‘,/8p.)xu(1..' 0
Y, = (8Hy/dp,, OH,/0g,, 8H,/0p,, "Hﬂ/aQI)zo(T., »

Following Poincaré's theoremon periodic solutions of systems admitting of first integrals
/3, 4/, we calculate the rank of the matrix Z,(f,). The rank of the matrix Z, (7,) equals four:
the minor

My = 204 (1 — ch (20h,07), by = (a,6¢)"
differs from zero. Therefore, according to Poincaré's theorem, for sufficiently small values
of e at the energy integral level {H =h,} a one-parameter family of periodic solutions z (¢, &)
exists that is analytically dependent on the parameter g, and reduces to z;(,0) when e =0.

Then rank of the matrix Z,(7y) is not greater than four: the minor

My = 204* (1 — c08 (213, 04™Y)
differs from zero if
A ogk, k=0, 41, ... (2.4)

In this case the rank Z,(T,) =4 and by Poincaré's theorem for sufficiently small values of
e, a one-parameter family of periodic solutions =,(%¢) exists located at the energy integral
level {H =he} and reducing to =zt 0) when ¢ =20.

Remark. If conditions (2.4) are not satisfied, then the existence of periodic solutions
close to z(t, 0) for small e 0 follows fromthe Kolmogorov-Arnol'd-Moser theory. However,
the question of whether these solutions form a family dependent analytically on e requires
additional investigation.

3. We will examine the one-parameter family of periodic solutions z,{t, e). The solution
2, (t, 0) is an unstable periodic solution of hyperbolic type. Therefore, for sufficiently small
values of g the periodic solutions z,(t, &) are also hyperbolic. For these solutions separatrices
exist, i.e. two two-dimensional invariant asymptotic surfaces

Ay (&) = Ayt (&) U {25 (8, &)} U Ay~ (e)
Ag (o)) = As* (e)) U {z (2, &)} U Ag™ ()
filled compactly with trajectories approaching z.(f &) asymptotically as t— Foo.

For ¢ =0 the branches of the separatrices A,*(0) and Ag*(0), A= (0) and A, (0) coincide

and consist of the solutions z,F (¢, gs) '
sin ¢t = 42 sh t,/ch?r;, cos g = 2/ch?y — 1
pt = 2 /ch 1y, ga = 1T + 920, Ps= Py
=M, n=M"0,

Theorem 1. If at least one of the conditions (1.l) is not satisfied, then for sufficiently
small values of g, 40 the branches of the separatrices Au*(e) and As* (e), Au™(e) and A7 (g)
intersect transversely and the system of Egs.(1.2) has no supplementary first integral analytic
in the phase variables.

Proof. According to (2.3), the function H,has the form
Hy = by* exp (igs) + hy* exp (—ig)) = by + hey
where
B = —1/; (ay7'a1a,0,p, exp (Figy) + myLeg)
Following /5/, we find the functions

TE (q2) = D) I exp (ikan)
[3
2nk 8H, ))Z‘ +
J;,t=—2nk(1—exp(— 9P, resh, (z,% (2))
1,
Here z,%* (1) is the analytical continuation of the solution ze (t,0) in the strip
m: 0 < Im ¢ < 20/

Evaluating the coefficients Jki using residues, we obtain
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IE () = 2““;1‘0!"?1-‘ ( ch (5:}’1/2) + sh (111‘?1/2) ) sin (g2 + B)

Since the functions J%(g) have isolated zeros, then according to /5/ (Theorem 1), for
sufficiently small values of ¢, 50 the pairs of separatrix branches A, (g) and At (e), Au™(e)
and A, (e) split and intersect transversely, while the system of equations of motion has no
additional first integral analytic in the phase variables.

4. we consider the case when both conditions (l.l) are satisfied. We introduce the
dimensionless parameter e,>0 into the system of equations of motion by setting ! = Legs 4 = Ly,
where L,> 0, L, >0 are constants with the dimensions of length and satisfying the condition
myL; = mgL, by virtue of the second relationship in (1.1).

The Hamilton function (1.3) is analytic in the phase variables p;, ¢; and the parameter
e,e[O.uam;dL;ﬂVﬁ, its power series expansion in e, has the form

H (p1s Psy 911 ¢2) = Hy (1, P2 ¢2) + &Hy (p1y P2y 01y 02) +
Ho = Y, (I;7'py? + Is7lpg%) — myl,g cos gy (4.1)
H; = —myl L, cos (g — g3) p1P2 (4.2)
For e,= 0 the system of Egs.(l.2) with the Hamiltonian (4.1) is completely integrable:
in addition to the energy integral ®,=H, it possesses the integral ®,=p, corresponding to the
cyclic coordinate g¢,. In this case for @, =P, %0 the first linkage performs uniform rotations
around the 4, axis with angular velocity o, = P)/I;, while the second linkage oscillates as a
physical pendulum.
At energy integral levels
Ny = 102 + molog, Mo = 110,22 — mylg
where e, = 0 ,periodic solutions exist (P, = 0)
Y (6, 0) = {py =Py, py=0, s = 0t + 1o ¢ = 7}
Vot 0) = {py = Pyy py =0, s = 04t + q400 ¢ = 0}

of period T, = 2ne,l. According to Poincaré's theorem, the solution ¥4 (¢, 0) here belongs to a
family of periodic solutions of hyperbolic type {y,(t,es} that is analytically dependent on the
small parameter e, and located on {H =1,}. When the conditions

(a8l 17" == 0gky k=0, &1, ...
are satisfied the solution y,(t 0) also belongs to the family of periodic soltuions {y; (¢, e)}
located on {H =n,} that depend analytically on the small parameter e,.

For sufficiently small values of ¢ the periodic solutions y,(t, es2) also possess invariant
asymptotic surfaces, separatrices, where the following holds.

Theorem 2. 1If conditions (l.l) arxe satisfied, then for sufficiently small values of
ey + 0 the separatrix branches of the hyperbolic periodic solution y, (t,e:) intersect transversely
and Egs.(1.2) have no supplementary first integral analytic in the phase variables.

The proof of Theorem 2 is analogous to the proof of Theorem 1.

The lack of a supplementary integral for the equations of motion of a two-link pendulum
in the general case enables us to clarify the nature of the complex motion of this mechanical
system.
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